Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Hardback

Machine Learning, Natural Language Processing, and Psychometrics

$255.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

With the exponential increase of digital assessment, different types of data in addition to item responses become available in the measurement process. One of the salient features in digital assessment is that process data can be easily collected. This non-conventional structured or unstructured data source may bring new perspectives to better understand the assessment products or accuracy and the process how an item product was attained. The analysis of the conventional and non-conventional assessment data calls for more methodology other than the latent trait modeling. Natural language processing (NLP) methods and machine learning algorithms have been successfully applied in automated scoring. It has been explored in providing diagnostic feedback to test-takers in writing assessment. Recently, machine learning algorithms have been explored for cheating detection and cognitive diagnosis. When the measurement field promote the use of assessment data to provide feedback to improve teaching and learning, it is the right time to explore new methodology and explore the value added from other data sources. This book presents the use cases of machine learning and NLP in improving the assessment theory and practices in high-stakes summative assessment, learning, and instruction. More specifically, experts from the field addressed the topics related to automated item generations, automated scoring, automated feedback in writing, explainability of automated scoring, equating, cheating and alarming response detection, adaptive testing, and applications in science assessment. This book demonstrates the utility of machine learning and NLP in assessment design and psychometric analysis.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Emerald Publishing Ltd (Iap)
Date
19 March 2024
Pages
242
ISBN
9798887306056

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

With the exponential increase of digital assessment, different types of data in addition to item responses become available in the measurement process. One of the salient features in digital assessment is that process data can be easily collected. This non-conventional structured or unstructured data source may bring new perspectives to better understand the assessment products or accuracy and the process how an item product was attained. The analysis of the conventional and non-conventional assessment data calls for more methodology other than the latent trait modeling. Natural language processing (NLP) methods and machine learning algorithms have been successfully applied in automated scoring. It has been explored in providing diagnostic feedback to test-takers in writing assessment. Recently, machine learning algorithms have been explored for cheating detection and cognitive diagnosis. When the measurement field promote the use of assessment data to provide feedback to improve teaching and learning, it is the right time to explore new methodology and explore the value added from other data sources. This book presents the use cases of machine learning and NLP in improving the assessment theory and practices in high-stakes summative assessment, learning, and instruction. More specifically, experts from the field addressed the topics related to automated item generations, automated scoring, automated feedback in writing, explainability of automated scoring, equating, cheating and alarming response detection, adaptive testing, and applications in science assessment. This book demonstrates the utility of machine learning and NLP in assessment design and psychometric analysis.

Read More
Format
Hardback
Publisher
Emerald Publishing Ltd (Iap)
Date
19 March 2024
Pages
242
ISBN
9798887306056