Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Alzheimer's disease (AD) poses a significant global health challenge, with an estimated 50 million people affected worldwide and no known cure. Traditional methods of diagnosis and prediction often rely on subjective assessments. They are limited in detecting the disease early, leading to delayed intervention and poorer patient outcomes. Additionally, the complexity of AD, with its multifactorial etiology and diverse clinical manifestations, requires a multidisciplinary approach for effective management. AI-Driven Alzheimer's Disease Detection and Prediction offers a groundbreaking solution by leveraging advanced artificial intelligence (AI) techniques to enhance early diagnosis and prediction of AD. This edited book provides a comprehensive overview of state-of-the-art research, methodologies, and applications at the intersection of AI and AD detection. By bridging the gap between traditional diagnostic methods and cutting-edge technology, this book facilitates knowledge exchange, fosters interdisciplinary collaboration, and contributes to innovative solutions for AD management. It also benefits data scientists, engineers, policymakers, and professionals in the pharmaceutical and biotechnology industries. Graduate students interested in healthcare and technology will find accessible information on the latest developments in AI-driven approaches to AD detection and prediction.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Alzheimer's disease (AD) poses a significant global health challenge, with an estimated 50 million people affected worldwide and no known cure. Traditional methods of diagnosis and prediction often rely on subjective assessments. They are limited in detecting the disease early, leading to delayed intervention and poorer patient outcomes. Additionally, the complexity of AD, with its multifactorial etiology and diverse clinical manifestations, requires a multidisciplinary approach for effective management. AI-Driven Alzheimer's Disease Detection and Prediction offers a groundbreaking solution by leveraging advanced artificial intelligence (AI) techniques to enhance early diagnosis and prediction of AD. This edited book provides a comprehensive overview of state-of-the-art research, methodologies, and applications at the intersection of AI and AD detection. By bridging the gap between traditional diagnostic methods and cutting-edge technology, this book facilitates knowledge exchange, fosters interdisciplinary collaboration, and contributes to innovative solutions for AD management. It also benefits data scientists, engineers, policymakers, and professionals in the pharmaceutical and biotechnology industries. Graduate students interested in healthcare and technology will find accessible information on the latest developments in AI-driven approaches to AD detection and prediction.