Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Advancing Intelligent Networks Through Distributed Optimization
Paperback

Advancing Intelligent Networks Through Distributed Optimization

$1019.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire device's learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems' optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
IGI Global
Country
United States
Date
29 August 2024
Pages
623
ISBN
9798369348741

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire device's learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems' optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.

Read More
Format
Paperback
Publisher
IGI Global
Country
United States
Date
29 August 2024
Pages
623
ISBN
9798369348741