Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive solutions by applying artificial intelligence (AI) and machine learning (ML). This book begins by interpreting the nature of disasters, clearly distinguishing between natural and man-made hazards. It delves into the intricacies of disaster risk reduction (DRR), emphasizing the human contribution to most disasters. Recognizing the necessity for a multifaceted approach, the book advocates the four 'R's - Risk Mitigation, Response Readiness, Response Execution, and Recovery - as integral components of comprehensive disaster management. This book explores various AI and ML applications designed to predict, manage, and mitigate the impact of natural disasters, focusing on natural language processing, and early warning systems. The contrast between weak AI, simulating human intelligence for specific tasks, and strong AI, capable of autonomous problem-solving, is thoroughly examined in the context of disaster management. Its chapters systematically address critical issues, including real-world data handling, challenges related to data accessibility, completeness, security, privacy, and ethical considerations.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive solutions by applying artificial intelligence (AI) and machine learning (ML). This book begins by interpreting the nature of disasters, clearly distinguishing between natural and man-made hazards. It delves into the intricacies of disaster risk reduction (DRR), emphasizing the human contribution to most disasters. Recognizing the necessity for a multifaceted approach, the book advocates the four 'R's - Risk Mitigation, Response Readiness, Response Execution, and Recovery - as integral components of comprehensive disaster management. This book explores various AI and ML applications designed to predict, manage, and mitigate the impact of natural disasters, focusing on natural language processing, and early warning systems. The contrast between weak AI, simulating human intelligence for specific tasks, and strong AI, capable of autonomous problem-solving, is thoroughly examined in the context of disaster management. Its chapters systematically address critical issues, including real-world data handling, challenges related to data accessibility, completeness, security, privacy, and ethical considerations.