Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Matrix Decomposition and Applications
Paperback

Matrix Decomposition and Applications

$199.99
Sign in or become a Readings Member to add this title to your wishlist.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this book is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields. This book is primarily a summary of purpose, significance of important matrix decomposition methods, e.g., LU, QR, and SVD, and the origin and complexity of the methods which shed light on their modern applications. Most importantly, this article presents improved procedures for most of the calculations of the decomposition algorithms which potentially reduce the complexity they induce. Again, this is a decomposition-based context, thus we will introduce the related background when it is needed and necessary. In many other textbooks on linear algebra, the principal idea

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Eliva Press
Date
21 August 2022
Pages
246
ISBN
9789994982042

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this book is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields. This book is primarily a summary of purpose, significance of important matrix decomposition methods, e.g., LU, QR, and SVD, and the origin and complexity of the methods which shed light on their modern applications. Most importantly, this article presents improved procedures for most of the calculations of the decomposition algorithms which potentially reduce the complexity they induce. Again, this is a decomposition-based context, thus we will introduce the related background when it is needed and necessary. In many other textbooks on linear algebra, the principal idea

Read More
Format
Paperback
Publisher
Eliva Press
Date
21 August 2022
Pages
246
ISBN
9789994982042