Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
If there were no Coulomb interaction among electrons, it would be relatively straightforward to solve the many-electron Schroedinger equation. It is, however, precisely this interaction that is at the heart of numerous fascinating phenomena in condensed matter physics such as superconductivity, Kondo physics, magnetism, etc. Due to the large number of electrons in a material being of the order of Avogadro's number, it is at present - and perhaps in the foreseeable future - not feasible or even desirable to solve the Schroedinger equation to obtain the many-electron wavefunction. Fortunately, a large number of important physical properties can be calculated without explicit knowledge of the wavefunction.Two of the most important formalisms for dealing with the many-electron problem which avoid a direct use of the many-electron wavefunction are the Green function and the density functional theory. Within the Kohn-Sham scheme the latter is used to calculate ground-state properties whereas the former for excitation spectra. The book presents the fundamentals of these two theories in detail with essential many-body tools, such as the occupation number representation and Grassmann algebra developed from scratch. Prior knowledge of many-body theory is not a prerequisite so that it is readable for final-year undergraduates and graduate students in physics and chemistry as well as researchers in the field of electronic structure and many-body theory. The book includes in the last chapter an exposition of a density-functional path for determining the Green function, a new formalism recently proposed by the author. The book should be a valuable companion for those embarking in the field of many-electron physics.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
If there were no Coulomb interaction among electrons, it would be relatively straightforward to solve the many-electron Schroedinger equation. It is, however, precisely this interaction that is at the heart of numerous fascinating phenomena in condensed matter physics such as superconductivity, Kondo physics, magnetism, etc. Due to the large number of electrons in a material being of the order of Avogadro's number, it is at present - and perhaps in the foreseeable future - not feasible or even desirable to solve the Schroedinger equation to obtain the many-electron wavefunction. Fortunately, a large number of important physical properties can be calculated without explicit knowledge of the wavefunction.Two of the most important formalisms for dealing with the many-electron problem which avoid a direct use of the many-electron wavefunction are the Green function and the density functional theory. Within the Kohn-Sham scheme the latter is used to calculate ground-state properties whereas the former for excitation spectra. The book presents the fundamentals of these two theories in detail with essential many-body tools, such as the occupation number representation and Grassmann algebra developed from scratch. Prior knowledge of many-body theory is not a prerequisite so that it is readable for final-year undergraduates and graduate students in physics and chemistry as well as researchers in the field of electronic structure and many-body theory. The book includes in the last chapter an exposition of a density-functional path for determining the Green function, a new formalism recently proposed by the author. The book should be a valuable companion for those embarking in the field of many-electron physics.