Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The book focuses on a new interdisciplinary understanding of the metabolic syndrome (MetS) for better health maintenance. It provides an updated understanding of the underlying principles, possible targets, implementation approaches and the effectiveness of various avoidance strategies in MetS. The chapters cover a wide range of topics, including major advances in general aspects of metabolic syndrome, functional changes, new diagnostic methods, genotype-phenotype associations, the effect of exercise and multitarget pharmacotherapeutic strategies for MetS and perspectives on personalized medicine. It also discusses epigenetic mechanisms underlying MetS-related processes and epigenetic strategies to prevent related diseases. The book also presents summarized information about the associated factors and mechanisms linking cancer and MetS and to identify potential targets for the treatment of these patients. A better understanding of the various linkages will provide greater insight into the management of cancer patients by preventing MetS and related alterations. Key Features
Comprehensive information focused on the biological factors and physiological changes associated with metabolic syndrome
Updates on metabolic syndrome diagnosis and management
Summarized information on clinical implications for cancer therapy
Thoroughly referenced chapters with summaries and discussions for quick understanding
The book is an informative resource for interdisciplinary scientists and researchers in life sciences and medicine. Furthermore, it, including the insulin-like growth factor (IGF-1) pathway, estrogen signaling, visceral adiposity, hyperinsulinemia, hyperglycemia, aromatase activity, adipokinase production, angiogenesis, oxidative stress, DNA damage and pro-inflammatory cytokines, and their clinical implications in cancer therapy.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The book focuses on a new interdisciplinary understanding of the metabolic syndrome (MetS) for better health maintenance. It provides an updated understanding of the underlying principles, possible targets, implementation approaches and the effectiveness of various avoidance strategies in MetS. The chapters cover a wide range of topics, including major advances in general aspects of metabolic syndrome, functional changes, new diagnostic methods, genotype-phenotype associations, the effect of exercise and multitarget pharmacotherapeutic strategies for MetS and perspectives on personalized medicine. It also discusses epigenetic mechanisms underlying MetS-related processes and epigenetic strategies to prevent related diseases. The book also presents summarized information about the associated factors and mechanisms linking cancer and MetS and to identify potential targets for the treatment of these patients. A better understanding of the various linkages will provide greater insight into the management of cancer patients by preventing MetS and related alterations. Key Features
Comprehensive information focused on the biological factors and physiological changes associated with metabolic syndrome
Updates on metabolic syndrome diagnosis and management
Summarized information on clinical implications for cancer therapy
Thoroughly referenced chapters with summaries and discussions for quick understanding
The book is an informative resource for interdisciplinary scientists and researchers in life sciences and medicine. Furthermore, it, including the insulin-like growth factor (IGF-1) pathway, estrogen signaling, visceral adiposity, hyperinsulinemia, hyperglycemia, aromatase activity, adipokinase production, angiogenesis, oxidative stress, DNA damage and pro-inflammatory cytokines, and their clinical implications in cancer therapy.