Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Advances in Thin-Film Solar Cells
Hardback

Advances in Thin-Film Solar Cells

$463.99
Sign in or become a Readings Member to add this title to your wishlist.

Solar energy conversion plays a very important role in the rapid introduction of renewable energy, which is essential to meet future energy demands without further polluting the environment, but current solar panels based on silicon are expensive due to the cost of raw materials and high energy consumption during production. The way forward is to move towards thin-film solar cells using alternative materials and low-cost manufacturing methods. The photovoltaic community is actively researching thin-film solar cells based on amorphous silicon, cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and dye-sensitised and organic materials. However, progress has been slow due to a lack of proper understanding of the physics behind these devices.

This book concentrates on the latest developments and attempts to improve our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. The author extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multi-layer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system, and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible and infra-red) within the solar spectrum and combine impact ionisation and impurity photovoltaic effects.

The improved device understanding presented in this book should impact and guide future photovoltaic device development and low-cost thin-film solar panel manufacture. This new edition features an additional chapter besides exercises and their solutions, which will be useful for academics teaching in this field.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Pan Stanford Publishing Pte Ltd
Country
Singapore
Date
24 September 2018
Pages
286
ISBN
9789814800129

Solar energy conversion plays a very important role in the rapid introduction of renewable energy, which is essential to meet future energy demands without further polluting the environment, but current solar panels based on silicon are expensive due to the cost of raw materials and high energy consumption during production. The way forward is to move towards thin-film solar cells using alternative materials and low-cost manufacturing methods. The photovoltaic community is actively researching thin-film solar cells based on amorphous silicon, cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and dye-sensitised and organic materials. However, progress has been slow due to a lack of proper understanding of the physics behind these devices.

This book concentrates on the latest developments and attempts to improve our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. The author extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multi-layer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system, and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible and infra-red) within the solar spectrum and combine impact ionisation and impurity photovoltaic effects.

The improved device understanding presented in this book should impact and guide future photovoltaic device development and low-cost thin-film solar panel manufacture. This new edition features an additional chapter besides exercises and their solutions, which will be useful for academics teaching in this field.

Read More
Format
Hardback
Publisher
Pan Stanford Publishing Pte Ltd
Country
Singapore
Date
24 September 2018
Pages
286
ISBN
9789814800129