Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This book is about a recently developed class of strategies, known as the fence methods, which fits particularly well in non-conventional and complex model selection problems with practical considerations. The idea involves a procedure to isolate a subgroup of what are known as correct models, of which the optimal model is a member. This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from amongst those within the fence according to a criterion which can be made flexible. In particular, the criterion of optimality can incorporate consideration of practical interest, thus making model selection a real life practice.Furthermore, this book introduces a data-driven approach, called adaptive fence, which can be used in a wide range of problems involving determination of tuning parameters, or constants. Instead of relying on asymptotic theory, the fence focuses on finite-sample performance, and computation. Such features are particularly suitable to statistics in the new era.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This book is about a recently developed class of strategies, known as the fence methods, which fits particularly well in non-conventional and complex model selection problems with practical considerations. The idea involves a procedure to isolate a subgroup of what are known as correct models, of which the optimal model is a member. This is accomplished by constructing a statistical fence, or barrier, to carefully eliminate incorrect models. Once the fence is constructed, the optimal model is selected from amongst those within the fence according to a criterion which can be made flexible. In particular, the criterion of optimality can incorporate consideration of practical interest, thus making model selection a real life practice.Furthermore, this book introduces a data-driven approach, called adaptive fence, which can be used in a wide range of problems involving determination of tuning parameters, or constants. Instead of relying on asymptotic theory, the fence focuses on finite-sample performance, and computation. Such features are particularly suitable to statistics in the new era.