Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Piecewise constant systems exist in widely expanded areas such as engineering, physics, and mathematics. Extraordinary and complex characteristics of piecewise constant systems have been reported in recent years. This book provides the methodologies for analyzing and assessing nonlinear piecewise constant systems on a theoretically and practically sound basis. Recently developed approaches for theoretically analyzing and numerically solving the nonlinear piecewise constant dynamic systems are reviewed. A new greatest integer argument with a piecewise constant function is utilized for nonlinear dynamic analyses and for establishing a novel criterion in diagnosing irregular and chaotic solutions from the regular solutions of a nonlinear dynamic system. The newly established piecewise constantization methodology and its implementation in analytically solving for nonlinear dynamic problems are also presented.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Piecewise constant systems exist in widely expanded areas such as engineering, physics, and mathematics. Extraordinary and complex characteristics of piecewise constant systems have been reported in recent years. This book provides the methodologies for analyzing and assessing nonlinear piecewise constant systems on a theoretically and practically sound basis. Recently developed approaches for theoretically analyzing and numerically solving the nonlinear piecewise constant dynamic systems are reviewed. A new greatest integer argument with a piecewise constant function is utilized for nonlinear dynamic analyses and for establishing a novel criterion in diagnosing irregular and chaotic solutions from the regular solutions of a nonlinear dynamic system. The newly established piecewise constantization methodology and its implementation in analytically solving for nonlinear dynamic problems are also presented.