Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This text presents an approximation theory for a general class of nonlinear evolution equations in Banach spaces and the semigroup theory, including the linear (Hille-Yosida), nonlinear (Crandall-Liggett) and time-dependent (Crandall-Pazy) theorems. The implicit finite difference method of Euler is shown to generate a sequence convergent to the unique integral solution of evolution equations of the maximal monotone type. Moreover, the Chernoff theory provides a sufficient condition for consistent and stable time integration of time-dependent nonlinear equations. The Trotter-Kato theorem and the Lie-Trotter type product formula give a mathematical framework for the convergence analysis of numerical approximations of solutions to a general class of partial differential equations. This work contains examples demonstrating the applicability of the generation as well as the approximation theory. In addition, the Kobayashi-Oharu approach of locally quasi-dissipative operators is discussed for homogeneous as well as non-homogeneous equations. Applications to the delay differential equations, Navier-Stokes equation and scalar conservation equation are given.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This text presents an approximation theory for a general class of nonlinear evolution equations in Banach spaces and the semigroup theory, including the linear (Hille-Yosida), nonlinear (Crandall-Liggett) and time-dependent (Crandall-Pazy) theorems. The implicit finite difference method of Euler is shown to generate a sequence convergent to the unique integral solution of evolution equations of the maximal monotone type. Moreover, the Chernoff theory provides a sufficient condition for consistent and stable time integration of time-dependent nonlinear equations. The Trotter-Kato theorem and the Lie-Trotter type product formula give a mathematical framework for the convergence analysis of numerical approximations of solutions to a general class of partial differential equations. This work contains examples demonstrating the applicability of the generation as well as the approximation theory. In addition, the Kobayashi-Oharu approach of locally quasi-dissipative operators is discussed for homogeneous as well as non-homogeneous equations. Applications to the delay differential equations, Navier-Stokes equation and scalar conservation equation are given.