Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials: Basic Principles and Applications
Paperback

Photo-Thermal Spectroscopy with Plasmonic and Rare-Earth Doped (Nano)Materials: Basic Principles and Applications

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book highlights the theoretical foundations of and experimental techniques in photothermal heating and applications involving nanoscale heat generation using gold nanostructures embedded in various media. The experimental techniques presented involve a combination of nanothermometers doped with rare-earth atoms, plasmonic heaters and near-field microscopy. The theoretical foundations are based on the Maxwell’s and heat diffusion equations. In particular, the working principle and application of AlGaN:Er3+ film, Er2O3 nanoparticles and -NaYF4:Yb3+,Er3+ nanocrystals for nanothermometry based on Er3+ emission are discussed. The relationship between superheated liquid and bubble formation for optically excited nanostructures and the effects of the surrounding medium and solution properties on light absorption and scattering are presented. The application of Er2O3 and -NaYF4:Yb3+,Er3+ nanocrystals to study the temperature of optically heated gold nanoparticles is also presented. In closing, the book presents a new thermal imaging technique combining near-field microscopy and Er3+ photoluminescence spectroscopy to monitor the photothermal heating and steady-state sub-diffraction local temperature of optically excited gold nanostructures.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Verlag, Singapore
Country
Singapore
Date
17 January 2019
Pages
87
ISBN
9789811335907

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book highlights the theoretical foundations of and experimental techniques in photothermal heating and applications involving nanoscale heat generation using gold nanostructures embedded in various media. The experimental techniques presented involve a combination of nanothermometers doped with rare-earth atoms, plasmonic heaters and near-field microscopy. The theoretical foundations are based on the Maxwell’s and heat diffusion equations. In particular, the working principle and application of AlGaN:Er3+ film, Er2O3 nanoparticles and -NaYF4:Yb3+,Er3+ nanocrystals for nanothermometry based on Er3+ emission are discussed. The relationship between superheated liquid and bubble formation for optically excited nanostructures and the effects of the surrounding medium and solution properties on light absorption and scattering are presented. The application of Er2O3 and -NaYF4:Yb3+,Er3+ nanocrystals to study the temperature of optically heated gold nanoparticles is also presented. In closing, the book presents a new thermal imaging technique combining near-field microscopy and Er3+ photoluminescence spectroscopy to monitor the photothermal heating and steady-state sub-diffraction local temperature of optically excited gold nanostructures.

Read More
Format
Paperback
Publisher
Springer Verlag, Singapore
Country
Singapore
Date
17 January 2019
Pages
87
ISBN
9789811335907