Analytic Number Theory And Algebraic Asymptotic Analysis
Jesse Elliott
Analytic Number Theory And Algebraic Asymptotic Analysis
Jesse Elliott
This monograph elucidates and extends many theorems and conjectures in analytic number theory and algebraic asymptotic analysis via the natural notions of degree and logexponential degree. The Riemann hypothesis, for example, is equivalent to the statement that the degree of the function ?(x) - li(x) is 1/2, where ?(x) is the prime counting function and li(x) is the logarithmic integral function. Part 1 of the text is a survey of analytic number theory, Part 2 introduces the notion of logexponential degree and uses it to extend results in algebraic asymptotic analysis, and Part 3 applies the results of Part 2 to the various functions that figure most prominently in analytic number theory.Central to the notion of logexponential degree are G H Hardy's logarithmico-exponential functions, which are real functions defined in a neighborhood of ? that can be built from id, exp, and log using the operations +, ?, /, and degrees. Such functions are natural benchmarks for the orders of growth of functions in analytic number theory. The main goal of Part 3 is to express the logexponential degree of various functions in analytic number theory in terms of as few 'logexponential primitives' as possible. The logexponential degree of the function e??p?x(1-?p) - ?log x, for example, can be expressed in terms of that of ?(x) - li(x) and vice versa (where ? ? 0.5772 is the Euler-Mascheroni constant), despite the fact that very little is known about the logexponential degree of either function separately, even on condition of the Riemann hypothesis.
Order online and we’ll ship when available (13 February 2025)
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.