Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This unique compendium gives an updated presentation of clustering, one of the most challenging tasks in machine learning. The book provides a unitary presentation of classical and contemporary algorithms ranging from partitional and hierarchical clustering up to density-based clustering, clustering of categorical data, and spectral clustering.Most of the mathematical background is provided in appendices, highlighting algebraic and complexity theory, in order to make this volume as self-contained as possible. A substantial number of exercises and supplements makes this a useful reference textbook for researchers and students.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This unique compendium gives an updated presentation of clustering, one of the most challenging tasks in machine learning. The book provides a unitary presentation of classical and contemporary algorithms ranging from partitional and hierarchical clustering up to density-based clustering, clustering of categorical data, and spectral clustering.Most of the mathematical background is provided in appendices, highlighting algebraic and complexity theory, in order to make this volume as self-contained as possible. A substantial number of exercises and supplements makes this a useful reference textbook for researchers and students.