Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Hardback

Statistical Machine Learning With Applications In Finance

$448.99
Sign in or become a Readings Member to add this title to your wishlist.

This unique compendium develops a general approach to building models of economic and financial processes, with a focus on statistical learning techniques that scale to large data sets. It introduces the key elements of a parametric statistical model: likelihood, prior, and posterior, and show how to use them to make predictions.The book covers classical techniques such as multiple regression and the Kalman filter in a clear, accessible style that has been popular with students, but also includes detailed treatments of state-of-the-art models, highlighting tree-based methods, support vector machines and kernel methods, deep learning, and reinforcement learning. Theories are supplemented by real-world examples.This reference text is useful for undergraduate, graduate and even PhD students in quantitative finance, and also to practitioners who are facing the reality that data science and machine learning are disrupting the industry.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
World Scientific Publishing Co Pte Ltd
Country
Singapore
Date
30 April 2023
Pages
480
ISBN
9789811232336

This unique compendium develops a general approach to building models of economic and financial processes, with a focus on statistical learning techniques that scale to large data sets. It introduces the key elements of a parametric statistical model: likelihood, prior, and posterior, and show how to use them to make predictions.The book covers classical techniques such as multiple regression and the Kalman filter in a clear, accessible style that has been popular with students, but also includes detailed treatments of state-of-the-art models, highlighting tree-based methods, support vector machines and kernel methods, deep learning, and reinforcement learning. Theories are supplemented by real-world examples.This reference text is useful for undergraduate, graduate and even PhD students in quantitative finance, and also to practitioners who are facing the reality that data science and machine learning are disrupting the industry.

Read More
Format
Hardback
Publisher
World Scientific Publishing Co Pte Ltd
Country
Singapore
Date
30 April 2023
Pages
480
ISBN
9789811232336