Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus on optimal gain performances. Owing to their low computational complexity, the established controller design algorithms are applicable for large-scale systems. The theory and control strategies developed will not only be useful in handling large-scale positive delay systems with improved solvability and at lower cost, but also further our understanding of the system characteristics in other related areas, such as distributed coordination of networked multi-agent systems, formation control of multiple robots.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus on optimal gain performances. Owing to their low computational complexity, the established controller design algorithms are applicable for large-scale systems. The theory and control strategies developed will not only be useful in handling large-scale positive delay systems with improved solvability and at lower cost, but also further our understanding of the system characteristics in other related areas, such as distributed coordination of networked multi-agent systems, formation control of multiple robots.