Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Bessel Processes, Schramm-Loewner Evolution, and the Dyson Model
Paperback

Bessel Processes, Schramm-Loewner Evolution, and the Dyson Model

$161.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm-Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson’s Brownian motion (BM) model. The SLE and Dyson’s BM model may be considered as children of the Bessel process with parameter D, BES(D), and the SLE and Dyson’s BM model as grandchildren of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D
1. Dependence of the BES(D) path on its initial value is represented by the Bessel flow. In Chap. 2 SLE is introduced as a complexification of BES(D). Rich mathematics and physics involved in SLE are due to the nontrivial dependence of the Bessel flow on D. From a result for the Bessel flow, Cardy’s formula in Carleson’s form is derived for SLE. In Chap. 3 Dyson’s BM model with parameter
is introduced as a multivariate extension of BES(D) with the relation D =
+ 1. The book concentrates on the case where
= 2 and calls this case simply the Dyson model.The Dyson model inherits the two aspects of BES(3); hence it has very strong solvability. That is, the process is proved to be determinantal in the sense that all spatio-temporal correlation functions are given by determinants, and all of them are controlled by a single function called the correlation kernel. From the determinantal structure of the Dyson model, the Tracy-Widom distribution is derived.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Verlag, Singapore
Country
Singapore
Date
16 February 2016
Pages
141
ISBN
9789811002748

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm-Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson’s Brownian motion (BM) model. The SLE and Dyson’s BM model may be considered as children of the Bessel process with parameter D, BES(D), and the SLE and Dyson’s BM model as grandchildren of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D
1. Dependence of the BES(D) path on its initial value is represented by the Bessel flow. In Chap. 2 SLE is introduced as a complexification of BES(D). Rich mathematics and physics involved in SLE are due to the nontrivial dependence of the Bessel flow on D. From a result for the Bessel flow, Cardy’s formula in Carleson’s form is derived for SLE. In Chap. 3 Dyson’s BM model with parameter
is introduced as a multivariate extension of BES(D) with the relation D =
+ 1. The book concentrates on the case where
= 2 and calls this case simply the Dyson model.The Dyson model inherits the two aspects of BES(3); hence it has very strong solvability. That is, the process is proved to be determinantal in the sense that all spatio-temporal correlation functions are given by determinants, and all of them are controlled by a single function called the correlation kernel. From the determinantal structure of the Dyson model, the Tracy-Widom distribution is derived.

Read More
Format
Paperback
Publisher
Springer Verlag, Singapore
Country
Singapore
Date
16 February 2016
Pages
141
ISBN
9789811002748