Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Fundamentals of Fluorescence Microscopy: Exploring Life with Light
Paperback

Fundamentals of Fluorescence Microscopy: Exploring Life with Light

$152.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book starts at an introductory level and leads reader to the most advanced topics in fluorescence imaging and super-resolution techniques that have enabled new developments such as nanobioimaging, multiphoton microscopy, nanometrology and nanosensors.
The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going in more depth about advanced imaging systems and their applications. Additionally, molecular orbital theory is the important basis to present molecular physics and gain a complete understanding of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the molecular states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential imaging factors such as, molecular cross-section, Stoke shift, emission and absorption spectra, quantum yield, signal-to-noise ratio, Forster resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP) and fluorescence lifetime. These factors form the basis of many fluorescence based devices.
The book is organized into two parts. The first part deals with basics of imaging optics and its applications. The advanced part takes care of several imaging techniques and related instrumentation that are developed in the last decade pointing towards far-field diffraction unlimited imaging.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer
Date
23 August 2016
Pages
218
ISBN
9789401779661

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This book starts at an introductory level and leads reader to the most advanced topics in fluorescence imaging and super-resolution techniques that have enabled new developments such as nanobioimaging, multiphoton microscopy, nanometrology and nanosensors.
The interdisciplinary subject of fluorescence microscopy and imaging requires complete knowledge of imaging optics and molecular physics. So, this book approaches the subject by introducing optical imaging concepts before going in more depth about advanced imaging systems and their applications. Additionally, molecular orbital theory is the important basis to present molecular physics and gain a complete understanding of light-matter interaction at the geometrical focus. The two disciplines have some overlap since light controls the molecular states of molecules and conversely, molecular states control the emitted light. These two mechanisms together determine essential imaging factors such as, molecular cross-section, Stoke shift, emission and absorption spectra, quantum yield, signal-to-noise ratio, Forster resonance energy transfer (FRET), fluorescence recovery after photobleaching (FRAP) and fluorescence lifetime. These factors form the basis of many fluorescence based devices.
The book is organized into two parts. The first part deals with basics of imaging optics and its applications. The advanced part takes care of several imaging techniques and related instrumentation that are developed in the last decade pointing towards far-field diffraction unlimited imaging.

Read More
Format
Paperback
Publisher
Springer
Date
23 August 2016
Pages
218
ISBN
9789401779661