Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
After the launching of the first artificial satellites preceding interplanetary vehicles, celestial mechanics is no longer a science of interest confined to a small group of astronomers and mathematicians; it becomes a special engineering technique. I have tried to set this book in this new perspective, by severely limiting the choice of examples from classical celestial mechanics and by retaining only those useful in calculating the trajectory of a body in space. The main chapter in this book is the fifth, where a detailed solution is given of the problem of motion of an artificial satellite in the Earth’s gravitational field, using the methods of Von Zeipel and of Brouwer. It is shown how Lagrange’s equations can be applied to this problem. The first four chapters contain proofs of the main results useful for these two methods: the elliptical solution of the two-body problem and the basic algebra of celestial mechanics; some theorems of analytical mechanics; the Delaunay variables and the Lagrangian equations of variation of elements; the expansion of the disturbing function and the Bessel functions necessary for this expansion. The last two chapters are more descriptive in character. In them I have summarized briefly some of the classical theories of celestial mechanics, and have tried to show their distinctive characteristics without going into details.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
After the launching of the first artificial satellites preceding interplanetary vehicles, celestial mechanics is no longer a science of interest confined to a small group of astronomers and mathematicians; it becomes a special engineering technique. I have tried to set this book in this new perspective, by severely limiting the choice of examples from classical celestial mechanics and by retaining only those useful in calculating the trajectory of a body in space. The main chapter in this book is the fifth, where a detailed solution is given of the problem of motion of an artificial satellite in the Earth’s gravitational field, using the methods of Von Zeipel and of Brouwer. It is shown how Lagrange’s equations can be applied to this problem. The first four chapters contain proofs of the main results useful for these two methods: the elliptical solution of the two-body problem and the basic algebra of celestial mechanics; some theorems of analytical mechanics; the Delaunay variables and the Lagrangian equations of variation of elements; the expansion of the disturbing function and the Bessel functions necessary for this expansion. The last two chapters are more descriptive in character. In them I have summarized briefly some of the classical theories of celestial mechanics, and have tried to show their distinctive characteristics without going into details.