Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Differential Equations and Mathematical Biology
Paperback

Differential Equations and Mathematical Biology

$138.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over the past decade, mathematics has made a considerable impact as a tool with which to model and understand biological phenomena. In return, biology has confronted the mathematician with a variety of challenging problems which have stimulated developments in the theory of nonlinear differential equations. This book is the outcome of the need to introduce undergraduates of mathematics, the physical and biological sciences to some of those developments. It is primarily directed towards students with a mathematical background up to and including that normally taught in a first-year physical science degree of a British university (sophomore year in a North American university) who are interested in the application of mathematics to biological and physical situations. Chapter 1 is introductory, showing how the study of first-order ordinary differential equations may be used to model the growth of a population, monitoring the administration of drugs and the mechanism by which living cells divide. In Chapter 2, a fairly comprehensive account of linear ordinary differential equations with constant coefficients is given. Such equations arise frequently in the discussion of the biological models encountered throughout the text. Chapter 3 is devoted to modelling biological pheno mena and in particular includes (i) physiology of the heart beat cycle, (ii) blood flow, (iii) the transmission of electrochemical pulses in the nerve, (iv) the Belousov-Zhabotinskii chemical reaction and (v) predator-prey models.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer
Date
24 January 2012
Pages
340
ISBN
9789401159722

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Over the past decade, mathematics has made a considerable impact as a tool with which to model and understand biological phenomena. In return, biology has confronted the mathematician with a variety of challenging problems which have stimulated developments in the theory of nonlinear differential equations. This book is the outcome of the need to introduce undergraduates of mathematics, the physical and biological sciences to some of those developments. It is primarily directed towards students with a mathematical background up to and including that normally taught in a first-year physical science degree of a British university (sophomore year in a North American university) who are interested in the application of mathematics to biological and physical situations. Chapter 1 is introductory, showing how the study of first-order ordinary differential equations may be used to model the growth of a population, monitoring the administration of drugs and the mechanism by which living cells divide. In Chapter 2, a fairly comprehensive account of linear ordinary differential equations with constant coefficients is given. Such equations arise frequently in the discussion of the biological models encountered throughout the text. Chapter 3 is devoted to modelling biological pheno mena and in particular includes (i) physiology of the heart beat cycle, (ii) blood flow, (iii) the transmission of electrochemical pulses in the nerve, (iv) the Belousov-Zhabotinskii chemical reaction and (v) predator-prey models.

Read More
Format
Paperback
Publisher
Springer
Date
24 January 2012
Pages
340
ISBN
9789401159722