Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Anisotropy, i.e., the dependence of structure and properties on direction in space, is the most striking characteristic of crystals. Anisotropy is a result of the discrete nature of the crystal lattice, and it is the characteristic which distinguishes the crystalline state from another solid state of matter, the amorphous. The anisotropy of the structure and properties of crystals (this can be called their ‘internal anisotropy’) is also reflected in their external structure, i.e., morphology. The reflection is, however, non-linear: properties such as mechanical hardness … do not change strongly (typically several tens of percents, depending on direction) while the morphology … : the linear sizes in different directions of individual crystals often differ by several multiples or even several orders of magnitude, depending on the symmetry of the crystalline lattice and/or of the crystal prehistory. The enhanced anisotropy of morphology is, as a rule, a result of growth kinetics of different crystalline faces; it reflects a non-linear character of the kinetic laws of growth. This book is devoted to high morphological anisotropy. No strict classification of highly-anisotropic crystals exists. However some typical forms, or habits, can be singled out: first, whiskers (or needles, or fibers) as quasi-one-dimensional crystals, and second, platelets as quasi-two-dimensional crystals.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Anisotropy, i.e., the dependence of structure and properties on direction in space, is the most striking characteristic of crystals. Anisotropy is a result of the discrete nature of the crystal lattice, and it is the characteristic which distinguishes the crystalline state from another solid state of matter, the amorphous. The anisotropy of the structure and properties of crystals (this can be called their ‘internal anisotropy’) is also reflected in their external structure, i.e., morphology. The reflection is, however, non-linear: properties such as mechanical hardness … do not change strongly (typically several tens of percents, depending on direction) while the morphology … : the linear sizes in different directions of individual crystals often differ by several multiples or even several orders of magnitude, depending on the symmetry of the crystalline lattice and/or of the crystal prehistory. The enhanced anisotropy of morphology is, as a rule, a result of growth kinetics of different crystalline faces; it reflects a non-linear character of the kinetic laws of growth. This book is devoted to high morphological anisotropy. No strict classification of highly-anisotropic crystals exists. However some typical forms, or habits, can be singled out: first, whiskers (or needles, or fibers) as quasi-one-dimensional crystals, and second, platelets as quasi-two-dimensional crystals.