Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Gas at temperatures exceeding one million degrees is common in the Universe. Indeed it is likely that most of the gas in the Universe exists in intergalactic space in this form. Such highly-ionized gas, or plasma, is not restricted to the rarefied densities of intergalactic space, but is also found in clusters of galaxies, in galaxies themselves, in the expanding remnants of exploded stars and at higher densities in stars and the collapsed remains of stars up to the highest densities known, which occur in neutron stars. The abundant lower-Z elements, at least, in such gas are completely ionized and the gas acts as a highly conducting plasma. It is therefore subject to many cooperative phenomena, which are often complicated and ill-understood. Many of these processes are, however, well-studied (if not so well-understood) in laboratory plasmas and in the near environment of the Earth. Astronomers therefore have much to learn from plasma physicists working on laboratory and space plasmas and the parameter range studied by the plasma physicists might in turn be broadened by contact with astronomers. With that in mind, a NATO Advanced Research Workshop on Physical Processes in Hot Cosmic Plasmas was organized and took place in the Eolian Hotel, Vulcano, Italy on May 29 to June 2 1989. This book contains the Proceedings of that Workshop.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Gas at temperatures exceeding one million degrees is common in the Universe. Indeed it is likely that most of the gas in the Universe exists in intergalactic space in this form. Such highly-ionized gas, or plasma, is not restricted to the rarefied densities of intergalactic space, but is also found in clusters of galaxies, in galaxies themselves, in the expanding remnants of exploded stars and at higher densities in stars and the collapsed remains of stars up to the highest densities known, which occur in neutron stars. The abundant lower-Z elements, at least, in such gas are completely ionized and the gas acts as a highly conducting plasma. It is therefore subject to many cooperative phenomena, which are often complicated and ill-understood. Many of these processes are, however, well-studied (if not so well-understood) in laboratory plasmas and in the near environment of the Earth. Astronomers therefore have much to learn from plasma physicists working on laboratory and space plasmas and the parameter range studied by the plasma physicists might in turn be broadened by contact with astronomers. With that in mind, a NATO Advanced Research Workshop on Physical Processes in Hot Cosmic Plasmas was organized and took place in the Eolian Hotel, Vulcano, Italy on May 29 to June 2 1989. This book contains the Proceedings of that Workshop.