Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
FRANCIS W. HOLM 7102 Meadow Lane, Chevy Chase, MD 20815 The North Atlantic Treaty Organization (NATO) sponsored an Advanced Research Workshop (ARW) in Prague, Czech Republic, on 1-2 July 1996, to collect and study information on mobile alternative and supplemental demilitarization technologies and to report these fmdings. The mobile, or transportable, technologies identified for assessment at the workshop are alternatives to incineration technology for destruction of munitions, chemical warfare agent, and associated materials and debris. Although the discussion focused on the treatment of metal parts and explosive or energetic material, requirements for decontamination of other materials were discussed. The mobile alternative technologies are grouped into three categories based on process bulk operating temperature: low (0-200 C), medium (200-600 C), and high (600- 3,500 C). Reaction types considered include hydrolysis, biodegradation, electrochemical oxidation, gas-phase high-temperature reduction, stearn reforming, gasification, sulfur reactions, solvated electron chemistry, sodium reactions, supercritical water oxidation, wet air oxidation, and plasma torch technology. These categories represent a broad spectrum of processes, some of which have been studied only in the laboratory and some of which are in commercial use for destruction of hazardous and toxic wastes. Some technologies have been developed and used for specific commercial applications; however, in all cases, research, development, test, and evaluation (RDT &E) is necessary to assure that each technology application is effective for destroying chemical warfare materiel.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
FRANCIS W. HOLM 7102 Meadow Lane, Chevy Chase, MD 20815 The North Atlantic Treaty Organization (NATO) sponsored an Advanced Research Workshop (ARW) in Prague, Czech Republic, on 1-2 July 1996, to collect and study information on mobile alternative and supplemental demilitarization technologies and to report these fmdings. The mobile, or transportable, technologies identified for assessment at the workshop are alternatives to incineration technology for destruction of munitions, chemical warfare agent, and associated materials and debris. Although the discussion focused on the treatment of metal parts and explosive or energetic material, requirements for decontamination of other materials were discussed. The mobile alternative technologies are grouped into three categories based on process bulk operating temperature: low (0-200 C), medium (200-600 C), and high (600- 3,500 C). Reaction types considered include hydrolysis, biodegradation, electrochemical oxidation, gas-phase high-temperature reduction, stearn reforming, gasification, sulfur reactions, solvated electron chemistry, sodium reactions, supercritical water oxidation, wet air oxidation, and plasma torch technology. These categories represent a broad spectrum of processes, some of which have been studied only in the laboratory and some of which are in commercial use for destruction of hazardous and toxic wastes. Some technologies have been developed and used for specific commercial applications; however, in all cases, research, development, test, and evaluation (RDT &E) is necessary to assure that each technology application is effective for destroying chemical warfare materiel.