Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Biotechnology is advancing at a rapid pace with numerous applications in medicine, industry, agriculture and environmental remediation. Recognizing this, government, industrial and academic research and development invest ment in biotechnology has expanded rapidly. The past decade has seen the emergence of applications of this technology with a dual-use potential. Mili tary applications focus on four major areas: biomedical technology, such as vaccine development and medical diagnostics; detection of toxins, chemicals and pathogens; material biotechnology; and biological decontamination, in cluding biodegradation and bioremediation. This conference emphasizes the non-medical applications of biotechnol ogy. The first two sessions focus on the synthesis and properties of molecules that may be used in detectors. The traditional approach to detection of chemical and biological agents relied on the development of specific assays or analyses for known agents. Advances in molecular biology have made possible the production of large quantities of toxins which were previously available in minute quantities, and the molecular engineering of toxins and pathogens with specific pharmacologic and physical-chemical properties. In addition to the traditional approaches to detection of specific known compounds, biotechnology now offers generic approaches to detection. Physiological targets, known as receptors, are primary targets for many drugs and toxins. Similarly, pathogens rely on receptors to gain access to cells. These receptors function as sensitive detectors, generating signals which are transduced and amplified.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Biotechnology is advancing at a rapid pace with numerous applications in medicine, industry, agriculture and environmental remediation. Recognizing this, government, industrial and academic research and development invest ment in biotechnology has expanded rapidly. The past decade has seen the emergence of applications of this technology with a dual-use potential. Mili tary applications focus on four major areas: biomedical technology, such as vaccine development and medical diagnostics; detection of toxins, chemicals and pathogens; material biotechnology; and biological decontamination, in cluding biodegradation and bioremediation. This conference emphasizes the non-medical applications of biotechnol ogy. The first two sessions focus on the synthesis and properties of molecules that may be used in detectors. The traditional approach to detection of chemical and biological agents relied on the development of specific assays or analyses for known agents. Advances in molecular biology have made possible the production of large quantities of toxins which were previously available in minute quantities, and the molecular engineering of toxins and pathogens with specific pharmacologic and physical-chemical properties. In addition to the traditional approaches to detection of specific known compounds, biotechnology now offers generic approaches to detection. Physiological targets, known as receptors, are primary targets for many drugs and toxins. Similarly, pathogens rely on receptors to gain access to cells. These receptors function as sensitive detectors, generating signals which are transduced and amplified.