Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
High density digital magnetic and magneto-optical storage devices are widely used in audio, video, and data processing information technology, as well as in CAD/CAM computer systems. These widespread uses generate a continually increasing demand for both increased information storage densities and capacities, and for reduced access times. Hence, the materials engineering of high density storage media, with a high signal to noise ratio, and the associated design of sophisticated read and write heads, form the basis of major technological research. This research is especially complex because, ideally, the recorded information should be both erasable and, at the same time, secure and accessible over periods of many decades. As a result, research on these complex problems requires a multidisciplinary approach which utilizes the expertise in such widely differing fields as organic, inorganic, and solid state chemistry, metallurgy, solid state physics, electrical and mechanical engineering, and systems analysis. Often, further research specialization is necessary in each of these different disciplines. For instance, solid state physics and chemistry address the problems of crystallographic structure and phase diagram determination, magnetism, and optics, but more advanced research methods, such as high resolution electron microscopy and electronic band structure calculations, are necessary to understand the microstructure of particulate recording media or the electronic spectra of magneto-optical recording media.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
High density digital magnetic and magneto-optical storage devices are widely used in audio, video, and data processing information technology, as well as in CAD/CAM computer systems. These widespread uses generate a continually increasing demand for both increased information storage densities and capacities, and for reduced access times. Hence, the materials engineering of high density storage media, with a high signal to noise ratio, and the associated design of sophisticated read and write heads, form the basis of major technological research. This research is especially complex because, ideally, the recorded information should be both erasable and, at the same time, secure and accessible over periods of many decades. As a result, research on these complex problems requires a multidisciplinary approach which utilizes the expertise in such widely differing fields as organic, inorganic, and solid state chemistry, metallurgy, solid state physics, electrical and mechanical engineering, and systems analysis. Often, further research specialization is necessary in each of these different disciplines. For instance, solid state physics and chemistry address the problems of crystallographic structure and phase diagram determination, magnetism, and optics, but more advanced research methods, such as high resolution electron microscopy and electronic band structure calculations, are necessary to understand the microstructure of particulate recording media or the electronic spectra of magneto-optical recording media.