Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
It is only in recent times that infinite-dimensional Lie algebras have been the subject of other than sporadic study, with perhaps two exceptions: Cartan’s simple algebras of infinite type, and free algebras. However, the last decade has seen a considerable increase of interest in the subject, along two fronts: the topological and the algebraic. The former, which deals largely with algebras of operators on linear spaces, or on manifolds modelled on linear spaces, has been dealt with elsewhere*). The latter, which is the subject of the present volume, exploits the surprising depth of analogy which exists between infinite-dimen sional Lie algebras and infinite groups. This is not to say that the theory consists of groups dressed in Lie-algebraic clothing. One of the tantalising aspects of the analogy, and one which renders it difficult to formalise, is that it extends to theorems better than to proofs. There are several cases where a true theorem about groups translates into a true theorem about Lie algebras, but where the group-theoretic proof uses methods not available for Lie algebras and the Lie-theoretic proof uses methods not available for groups. The two theories tend to differ in fine detail, and extra variations occur in the Lie algebra case according to the underlying field. Occasionally the analogy breaks down altogether. And of course there are parts of the Lie theory with no group-theoretic counterpart.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
It is only in recent times that infinite-dimensional Lie algebras have been the subject of other than sporadic study, with perhaps two exceptions: Cartan’s simple algebras of infinite type, and free algebras. However, the last decade has seen a considerable increase of interest in the subject, along two fronts: the topological and the algebraic. The former, which deals largely with algebras of operators on linear spaces, or on manifolds modelled on linear spaces, has been dealt with elsewhere*). The latter, which is the subject of the present volume, exploits the surprising depth of analogy which exists between infinite-dimen sional Lie algebras and infinite groups. This is not to say that the theory consists of groups dressed in Lie-algebraic clothing. One of the tantalising aspects of the analogy, and one which renders it difficult to formalise, is that it extends to theorems better than to proofs. There are several cases where a true theorem about groups translates into a true theorem about Lie algebras, but where the group-theoretic proof uses methods not available for Lie algebras and the Lie-theoretic proof uses methods not available for groups. The two theories tend to differ in fine detail, and extra variations occur in the Lie algebra case according to the underlying field. Occasionally the analogy breaks down altogether. And of course there are parts of the Lie theory with no group-theoretic counterpart.