Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Over the past five years, through a continually increasing wave of activity in the physics community, supergravity has come to be regarded as one of the most promising ways of unifying gravity with other particle interaction as a finite gauge theory to explain the spectrum of elementary particles. Concurrently im portant mathematical works on the arena of supergravity has taken place, starting with Kostant’s theory of graded manifolds and continuing with Batchelor’s work linking this with the superspace formalism. There remains, however, a gap between the mathematical and physical approaches expressed by such unanswered questions as, does there exist a superspace having all the properties that physicists require of it? Does it make sense to perform path integral in such a space? It is hoped that these proceedings will begin a dialogue between mathematicians and physicists on such questions as the plan of renormalisation in supergravity. The contributors to the proceedings consist both of mathe maticians and relativists who bring their experience in differen tial geometry, classical gravitation and algebra and also quantum field theorists specialized in supersymmetry and supergravity. One of the most important problems associated with super symmetry is its relationship to the elementary particle spectrum.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
Over the past five years, through a continually increasing wave of activity in the physics community, supergravity has come to be regarded as one of the most promising ways of unifying gravity with other particle interaction as a finite gauge theory to explain the spectrum of elementary particles. Concurrently im portant mathematical works on the arena of supergravity has taken place, starting with Kostant’s theory of graded manifolds and continuing with Batchelor’s work linking this with the superspace formalism. There remains, however, a gap between the mathematical and physical approaches expressed by such unanswered questions as, does there exist a superspace having all the properties that physicists require of it? Does it make sense to perform path integral in such a space? It is hoped that these proceedings will begin a dialogue between mathematicians and physicists on such questions as the plan of renormalisation in supergravity. The contributors to the proceedings consist both of mathe maticians and relativists who bring their experience in differen tial geometry, classical gravitation and algebra and also quantum field theorists specialized in supersymmetry and supergravity. One of the most important problems associated with super symmetry is its relationship to the elementary particle spectrum.