Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Python Text Mining: Perform Text Processing, Word Embedding, Text Classification and Machine Translation
Paperback

Python Text Mining: Perform Text Processing, Word Embedding, Text Classification and Machine Translation

$90.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Natural Language Processing (NLP) has proven to be useful in a wide range of applications. Because of this, extracting information from text data sets requires attention to methods, techniques, and approaches.

‘Python Text Mining’ includes a number of application cases, demonstrations, and approaches that will help you deepen your understanding of feature extraction from data sets. You will get an understanding of good information retrieval, a critical step in accomplishing many machine learning tasks. We will learn to classify text into discrete segments solely on the basis of model properties, not on the basis of user-supplied criteria. The book will walk you through many methodologies, such as classification, that will enable you to rapidly construct recommendation engines, subject segmentation, and sentiment analysis applications. Toward the end, we will also look at machine translation and transfer learning.

By the end of this book, you’ll know exactly how to gather web-based text, process it, and then apply it to the development of NLP applications.

  1. Basic Text Processing Techniques

  2. Text to Numbers

  3. Word Embeddings

  4. Topic Modeling

  5. Unsupervised Sentiment Classification

  6. Text Classification Using ML

  7. Text Classification Using Deep learning

  8. Recommendation engine

  9. Transfer Learning

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
BPB Publications
Country
India
Date
26 April 2022
Pages
320
ISBN
9789389898781

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Natural Language Processing (NLP) has proven to be useful in a wide range of applications. Because of this, extracting information from text data sets requires attention to methods, techniques, and approaches.

‘Python Text Mining’ includes a number of application cases, demonstrations, and approaches that will help you deepen your understanding of feature extraction from data sets. You will get an understanding of good information retrieval, a critical step in accomplishing many machine learning tasks. We will learn to classify text into discrete segments solely on the basis of model properties, not on the basis of user-supplied criteria. The book will walk you through many methodologies, such as classification, that will enable you to rapidly construct recommendation engines, subject segmentation, and sentiment analysis applications. Toward the end, we will also look at machine translation and transfer learning.

By the end of this book, you’ll know exactly how to gather web-based text, process it, and then apply it to the development of NLP applications.

  1. Basic Text Processing Techniques

  2. Text to Numbers

  3. Word Embeddings

  4. Topic Modeling

  5. Unsupervised Sentiment Classification

  6. Text Classification Using ML

  7. Text Classification Using Deep learning

  8. Recommendation engine

  9. Transfer Learning

Read More
Format
Paperback
Publisher
BPB Publications
Country
India
Date
26 April 2022
Pages
320
ISBN
9789389898781