Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This timely text is the first monograph to develop self-consistent methods and apply these to the solution of problems of electromagnetic and elastic wave propagation in matrix composites and polycrystals. Predictions are compared with experimental data and exact solutions. Explicit equations and efficient numerical algorithms for calculating the velocities and attenuation coefficients of the mean (coherent) wave fields propagating in composites and polycrystals are presented.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This timely text is the first monograph to develop self-consistent methods and apply these to the solution of problems of electromagnetic and elastic wave propagation in matrix composites and polycrystals. Predictions are compared with experimental data and exact solutions. Explicit equations and efficient numerical algorithms for calculating the velocities and attenuation coefficients of the mean (coherent) wave fields propagating in composites and polycrystals are presented.