Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The use of flexible sigmoid functions makes artificial neural networks more versatile. This volume determines learning algorithms for sigmoid functions in several different learning modes using flexible structures of neural networks with new derivation algorithms. The book is aimed at electrical, electronic, and mechanical control and systems engineers concerned with intelligent control who wish to explore neural network approaches. Here, for readers who are unfamiliar with neural network computing, is a concise introduction to the main existing types of flexible neural networks. This book will be a valuable aid to new research in which high abilities in artificial neural networks in intelligent control design and development can be achieved.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The use of flexible sigmoid functions makes artificial neural networks more versatile. This volume determines learning algorithms for sigmoid functions in several different learning modes using flexible structures of neural networks with new derivation algorithms. The book is aimed at electrical, electronic, and mechanical control and systems engineers concerned with intelligent control who wish to explore neural network approaches. Here, for readers who are unfamiliar with neural network computing, is a concise introduction to the main existing types of flexible neural networks. This book will be a valuable aid to new research in which high abilities in artificial neural networks in intelligent control design and development can be achieved.