Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Product Research: The Art and Science Behind Successful Product Launches
Hardback

Product Research: The Art and Science Behind Successful Product Launches

$407.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

  1. 1. 1 Background Uncertainty can be considered as the lack of adequate information to make a decision. It is important to quantify uncertainties in mathematical models used for design and optimization of nondeterministic engineering systems. In general, - certainty can be broadly classi?ed into three types (Bae et al. 2004; Ha-Rok 2004; Klir and Wierman 1998; Oberkampf and Helton 2002; Sentz 2002). The ?rst one is aleatory uncertainty (also referred to as stochastic uncertainty or inherent - certainty) - it results from the fact that a system can behave in random ways. For example, the failure of an engine can be modeled as an aleatory uncertaintybecause the failure can occur at a random time. One cannot predict exactly when the engine will fail even if a large quantity of failure data is gathered (available). The second one is epistemic uncertainty (also known as subjective uncertainty or reducible - certainty) - it is the uncertainty of the outcome of some random event due to lack of knowledge or information in any phase or activity of the modeling process. By gaining information about the system or environmental factors, one can reduce the epistemic uncertainty. For example, a lack of experimental data to characterize new materials and processes leads to epistemic uncertainty.
Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Hardback
Publisher
Springer
Country
NL
Date
23 November 2009
Pages
305
ISBN
9789048128594

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

  1. 1. 1 Background Uncertainty can be considered as the lack of adequate information to make a decision. It is important to quantify uncertainties in mathematical models used for design and optimization of nondeterministic engineering systems. In general, - certainty can be broadly classi?ed into three types (Bae et al. 2004; Ha-Rok 2004; Klir and Wierman 1998; Oberkampf and Helton 2002; Sentz 2002). The ?rst one is aleatory uncertainty (also referred to as stochastic uncertainty or inherent - certainty) - it results from the fact that a system can behave in random ways. For example, the failure of an engine can be modeled as an aleatory uncertaintybecause the failure can occur at a random time. One cannot predict exactly when the engine will fail even if a large quantity of failure data is gathered (available). The second one is epistemic uncertainty (also known as subjective uncertainty or reducible - certainty) - it is the uncertainty of the outcome of some random event due to lack of knowledge or information in any phase or activity of the modeling process. By gaining information about the system or environmental factors, one can reduce the epistemic uncertainty. For example, a lack of experimental data to characterize new materials and processes leads to epistemic uncertainty.
Read More
Format
Hardback
Publisher
Springer
Country
NL
Date
23 November 2009
Pages
305
ISBN
9789048128594