Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The twentieth century has witnessed a striking transformation in the understanding of the theories of mathematical physics. There has emerged clearly the idea that physical theories are significantly characterized by their abstract mathematical structure. This is in opposition to the tradi tional opinion that one should look to the specific applications of a theory in orrter to understand it. One might with reason now espouse the view that to understand the deeper character of a theory one must know its abstract structure and understand the significance of that structure, while to understand how a theory might be modified in light of its experimental inadequacies one must be intimately acquainted with how it is applied. Quantum theory itself has gone through a development this century which illustrates strikingly the shifting perspective. From a collection of intuitive physical manoeuvers under Bohr, through a formative stage in which the mathematical framework was bifurcated (between Schrodinger and Heisenberg) to an elegant culmination in von Neumann’s Hilbert space formulation, the elementary theory moved, flanked even at this later stage by the ill-understood formalisms for the relativistic version and for the field-theoretic alternative; after that we have a gradual, but constant, elaboration of all these quantal theories as abstract mathematical structures (their point of departure being von Neumann’s formalism) until at the present time theoretical work is heavily preoccupied with the manipulation of purely abstract structures.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The twentieth century has witnessed a striking transformation in the understanding of the theories of mathematical physics. There has emerged clearly the idea that physical theories are significantly characterized by their abstract mathematical structure. This is in opposition to the tradi tional opinion that one should look to the specific applications of a theory in orrter to understand it. One might with reason now espouse the view that to understand the deeper character of a theory one must know its abstract structure and understand the significance of that structure, while to understand how a theory might be modified in light of its experimental inadequacies one must be intimately acquainted with how it is applied. Quantum theory itself has gone through a development this century which illustrates strikingly the shifting perspective. From a collection of intuitive physical manoeuvers under Bohr, through a formative stage in which the mathematical framework was bifurcated (between Schrodinger and Heisenberg) to an elegant culmination in von Neumann’s Hilbert space formulation, the elementary theory moved, flanked even at this later stage by the ill-understood formalisms for the relativistic version and for the field-theoretic alternative; after that we have a gradual, but constant, elaboration of all these quantal theories as abstract mathematical structures (their point of departure being von Neumann’s formalism) until at the present time theoretical work is heavily preoccupied with the manipulation of purely abstract structures.