Philosophie der Arithmetik: Mit Erganzenden Texten (1890-1901)

Edmund Husserl,L. Eley

Philosophie der Arithmetik: Mit Erganzenden Texten (1890-1901)
Format
Hardback
Publisher
Springer
Country
Published
31 July 1970
Pages
586
ISBN
9789024702305

Philosophie der Arithmetik: Mit Erganzenden Texten (1890-1901)

Edmund Husserl,L. Eley

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Der Begriff der Zahl ist ein vielfacher. Darauf weist uns schon die Mehrheit verschiedener Zahlworter hin, die in der Sprache des gewohnlichen Lebens auftreten und von den Grammatikern unter 5 folgenden Titeln aufgefiihrt zu werden pflegen: die Anzahlen oder Grundzahlen (numeralia cardinalia), die Ordnungszahlen (n. ordinalia), die Gattungszahlen (n. specialia), die Wiederho- lungszahlen (n. iterativa), die Vervielfaltigungszahlen (n. multi- plicativa) und die Bruchzahlen (n. partitiva). DaB die Anzahlen 10 als die ersten in dieser Reihe genannt werden, beruht ebenso wie die charakteristischen N amen, die sie sonst tragen - Grund- oder Kardinalzahlen -, nicht auf bloBer Konvention. Sie nehmen sprachlich eine bevorzugte SteHung dadurch ein, daB die samt- lichen iibrigen Zahlworter nur durch geringe Modifikationen aus 15 den Anzahlwortern hervorgehen (z. B. zwei, zweiter, zweierlei, zweifach, zweimal, zweitel). Die letzteren sind also wahrhafte Grundzahlworter. Die Sprache leitet uns hiermit auf den Gedan- ken hin, es mochten auch die korrespondierenden Beg r iff e samtlich in einem analogen Abhangigkeitsverhaltnisse stehen 20 zu denen der Anzahlen und gewisse inhaltsreichere Gedanken vor- steHen, in welchen die Anzahlen bloBe Bestandteile bilden. Die einfachste Uberlegung scheint dies zu bestatigen. So handelt es sich bei den Gattungszahlen (einerlei, zweierlei usw. ) um eine Anzahl von Verschiedenheiten innerhalb einer Gattung; bei den Wieder- 25 holungszahlen (einmal, zweimal usw. ) um die Anzahl einer Wiederholung. Bei den Vervielfaltigungs- und Bruchzahlen dient die Anzahl dazu, das Verhaltnis eines in gleiche Teile geteilten Ganzen zu einem Teile bzw.

This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days

Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.

Sign in or become a Readings Member to add this title to a wishlist.