Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Laser Technologies and Future Applications
Paperback

Laser Technologies and Future Applications

$277.99
Sign in or become a Readings Member to add this title to your wishlist.

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an acronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. It also allows a laser beam to stay narrow over great distances (collimation), a feature used in applications such as laser pointers and lidar (light detection and ranging). Lasers can also have high temporal coherence, which permits them to emit light with a very narrow frequency spectrum. Alternatively, temporal coherence can be used to produce ultra-short pulses of light with a broad spectrum but durations as short as a femtosecond.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
21 October 2024
Pages
192
ISBN
9786208224851

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an acronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. It also allows a laser beam to stay narrow over great distances (collimation), a feature used in applications such as laser pointers and lidar (light detection and ranging). Lasers can also have high temporal coherence, which permits them to emit light with a very narrow frequency spectrum. Alternatively, temporal coherence can be used to produce ultra-short pulses of light with a broad spectrum but durations as short as a femtosecond.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
21 October 2024
Pages
192
ISBN
9786208224851