Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

The horizon of Atomic Theories
Paperback

The horizon of Atomic Theories

$209.99
Sign in or become a Readings Member to add this title to your wishlist.

In the quantum world, our intuitions about nature become less reliable. For one, quantum objects don't have perfectly predictable motions---not even in principle. A quantum spacecraft wouldn't follow a single path. Instead, it would act like it was following many different paths. So while NASA can keep track of the precise path taken by an ordinary spacecraft on its journey, they would have no such luck with a quantum one. The best they could do is launch it and then use quantum physics to calculate the probability that the spacecraft reaches a given point at a given time.Quantum physics is slippery like this. A quantum object's position or speed can exist as a combination of possibilities until you measure it---that is, until you observe its location or how fast it's going. Once that happens, the combination vanishes, and position or speed can assume definite values. But as time goes on, those values tend to become uncertain again.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
20 May 2024
Pages
120
ISBN
9786207639786

In the quantum world, our intuitions about nature become less reliable. For one, quantum objects don't have perfectly predictable motions---not even in principle. A quantum spacecraft wouldn't follow a single path. Instead, it would act like it was following many different paths. So while NASA can keep track of the precise path taken by an ordinary spacecraft on its journey, they would have no such luck with a quantum one. The best they could do is launch it and then use quantum physics to calculate the probability that the spacecraft reaches a given point at a given time.Quantum physics is slippery like this. A quantum object's position or speed can exist as a combination of possibilities until you measure it---that is, until you observe its location or how fast it's going. Once that happens, the combination vanishes, and position or speed can assume definite values. But as time goes on, those values tend to become uncertain again.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
20 May 2024
Pages
120
ISBN
9786207639786