Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
Conductive polymers have attracted a great deal of interest in recent years because they have the characteristics of conventional polymers, such as easy processability and lightness, combined with the properties of semiconductor materials. This combination of properties makes it possible to apply this class of polymers in high value-added products, such as the electronics industry. The preparation of nanocomposites of conductive polymers and clay can lead to increases in properties (with great interest in electrical and optical properties) in relation to the matrix used, with the insertion of small percentages of filler. Poly(3-hexadecylthiophene) nanocomposites with montmorillonites organofiltered with a quaternary ammonium salt derived from thiophene ((3-thienyl) 2-ethyl trimethylammonium bromide) were prepared through in situ polymerization and characterized using infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis and Size Exclusion Chromatography (GPC).
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
Conductive polymers have attracted a great deal of interest in recent years because they have the characteristics of conventional polymers, such as easy processability and lightness, combined with the properties of semiconductor materials. This combination of properties makes it possible to apply this class of polymers in high value-added products, such as the electronics industry. The preparation of nanocomposites of conductive polymers and clay can lead to increases in properties (with great interest in electrical and optical properties) in relation to the matrix used, with the insertion of small percentages of filler. Poly(3-hexadecylthiophene) nanocomposites with montmorillonites organofiltered with a quaternary ammonium salt derived from thiophene ((3-thienyl) 2-ethyl trimethylammonium bromide) were prepared through in situ polymerization and characterized using infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis and Size Exclusion Chromatography (GPC).