Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Feature Optimization of Motor Imagery EEG Classification using ML
Paperback

Feature Optimization of Motor Imagery EEG Classification using ML

$172.99
Sign in or become a Readings Member to add this title to your wishlist.

Brain-computer interfaces (BCIs) hold great promise in biomedical engineering, particularly for diagnosing critical diseases. Motor imagery (MI) EEG classification, a key BCI process, faces challenges due to the complexity and non-stationary nature of EEG signals. These signals, recorded via electrodes, are digitized and analyzed using feature extraction techniques like FFT, STFT, CSP, and wavelet transforms, with wavelet transform being the most effective.This study proposes a deep neural network-based classification algorithm with teacher-learning-based optimization for feature refinement. Tested on a standard BCI dataset in MATLAB, the algorithm surpasses Bayesian and ensemble machine learning classifiers, enhancing classification accuracy and BCI system performance.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
17 December 2024
Pages
72
ISBN
9786205492451

Brain-computer interfaces (BCIs) hold great promise in biomedical engineering, particularly for diagnosing critical diseases. Motor imagery (MI) EEG classification, a key BCI process, faces challenges due to the complexity and non-stationary nature of EEG signals. These signals, recorded via electrodes, are digitized and analyzed using feature extraction techniques like FFT, STFT, CSP, and wavelet transforms, with wavelet transform being the most effective.This study proposes a deep neural network-based classification algorithm with teacher-learning-based optimization for feature refinement. Tested on a standard BCI dataset in MATLAB, the algorithm surpasses Bayesian and ensemble machine learning classifiers, enhancing classification accuracy and BCI system performance.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
17 December 2024
Pages
72
ISBN
9786205492451