Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Improved Parametric and Nonparametric Classification Techniques
Paperback

Improved Parametric and Nonparametric Classification Techniques

$143.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This text considers different parametric and nonparametric classification techniques to classify objects, and make a comparative study among these techniques. In most of the situations, classification techniques give few misclassifications under large samples as well as under the normal populations. If the data set comes from the non-normal populations, then we apply Box-Cox transformation to transform this data set into near normal. Hence, we investigate the effect of Box-Cox transformation and see that Box-Cox transformed data generates better discrimination and classification techniques. Also if the sample size is small, then we use the Bootstrap approach for classifying objects, and investigate that the Bootstrap classification technique used in this analysis performs better than the usual techniques of small samples. There is no unique classification technique that is suitable for all the situations, also examines that nonparametric classification techniques perform better than the parametric classification techniques, whereas the Neural Network classification technique gives optimum solutions among the nonparametric classification techniques.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
25 September 2020
Pages
124
ISBN
9786202917315

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

This text considers different parametric and nonparametric classification techniques to classify objects, and make a comparative study among these techniques. In most of the situations, classification techniques give few misclassifications under large samples as well as under the normal populations. If the data set comes from the non-normal populations, then we apply Box-Cox transformation to transform this data set into near normal. Hence, we investigate the effect of Box-Cox transformation and see that Box-Cox transformed data generates better discrimination and classification techniques. Also if the sample size is small, then we use the Bootstrap approach for classifying objects, and investigate that the Bootstrap classification technique used in this analysis performs better than the usual techniques of small samples. There is no unique classification technique that is suitable for all the situations, also examines that nonparametric classification techniques perform better than the parametric classification techniques, whereas the Neural Network classification technique gives optimum solutions among the nonparametric classification techniques.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
25 September 2020
Pages
124
ISBN
9786202917315