Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Predicting Lung Cancer Using Machine Learning Techniques
Paperback

Predicting Lung Cancer Using Machine Learning Techniques

$162.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In different cancers, for example, lung cancer, the time calculated is imperative to find the anomaly issue in target images. Gray Level Co-event Matrix (GLCM) is utilized for preprocessing of images and to feature extraction procedures to check the condition of the patient whether it is ordinary or irregular. Surface-based elements, for example, GLCM features assume a vital part of remedial image examination which is utilized for the identification of Lung cancer. In the event that lung cancer is effectively distinguished and anticipated in its initial stages, it lessens numerous treatment choices and furthermore, decreases the danger of intrusive surgery and increase survival rate. The proposed method will efficiently identify the position of the tumor in lungs using the probability framework. This will offer a promising outcome for recognition and diagnosis of lung cancer. In the proposed work, GLCM features are used for the prediction of lung tumor and tests are performed for performance analysis in comparison with the histogram and GLCM features, in which GLCM features are accurate in predicting lung tumor even if it takes more time than histogram features.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
30 September 2020
Pages
152
ISBN
9786202514347

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

In different cancers, for example, lung cancer, the time calculated is imperative to find the anomaly issue in target images. Gray Level Co-event Matrix (GLCM) is utilized for preprocessing of images and to feature extraction procedures to check the condition of the patient whether it is ordinary or irregular. Surface-based elements, for example, GLCM features assume a vital part of remedial image examination which is utilized for the identification of Lung cancer. In the event that lung cancer is effectively distinguished and anticipated in its initial stages, it lessens numerous treatment choices and furthermore, decreases the danger of intrusive surgery and increase survival rate. The proposed method will efficiently identify the position of the tumor in lungs using the probability framework. This will offer a promising outcome for recognition and diagnosis of lung cancer. In the proposed work, GLCM features are used for the prediction of lung tumor and tests are performed for performance analysis in comparison with the histogram and GLCM features, in which GLCM features are accurate in predicting lung tumor even if it takes more time than histogram features.

Read More
Format
Paperback
Publisher
LAP Lambert Academic Publishing
Date
30 September 2020
Pages
152
ISBN
9786202514347