Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Energy management and real-time scheduling for the Internet of Things
Paperback

Energy management and real-time scheduling for the Internet of Things

$209.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Energy harvesting systems should be designed to function perpetually without any human intervention because either costly or impractical. The introduction of energy harvesting capabilities into the IoT introduces a lot of design questions. Researchers strive to design efficient power managementand scheduling techniques which additionally adapt to real-time requirements that characterize a lot of energy harvesting computing systems present in the IoT. In this book, we particularly address the scheduling issue for uniprocessor architectures. We consider a self-powered system which has to execute, from one hand aperiodic tasks with minimal responsiveness, and from the other hand hard deadline periodic tasks. Classical scheduling techniques need to be reconceived so as to take into account the fluctuating energy source. The book describes novel aperiodic task servers which are energy harvesting aware. Extensive results of simulations are reported so as to bring to light the effectiveness of two aperiodic task servers: a Slack Stealing one and a Total Bandwidth one.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Scholars' Press
Date
8 April 2020
Pages
164
ISBN
9786138928713

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Energy harvesting systems should be designed to function perpetually without any human intervention because either costly or impractical. The introduction of energy harvesting capabilities into the IoT introduces a lot of design questions. Researchers strive to design efficient power managementand scheduling techniques which additionally adapt to real-time requirements that characterize a lot of energy harvesting computing systems present in the IoT. In this book, we particularly address the scheduling issue for uniprocessor architectures. We consider a self-powered system which has to execute, from one hand aperiodic tasks with minimal responsiveness, and from the other hand hard deadline periodic tasks. Classical scheduling techniques need to be reconceived so as to take into account the fluctuating energy source. The book describes novel aperiodic task servers which are energy harvesting aware. Extensive results of simulations are reported so as to bring to light the effectiveness of two aperiodic task servers: a Slack Stealing one and a Total Bandwidth one.

Read More
Format
Paperback
Publisher
Scholars' Press
Date
8 April 2020
Pages
164
ISBN
9786138928713