Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The robotic manipulators have become the integral part of various application areas such as industries, healthcare, nuclear plants and space etc. The significant advantages of these systems are precise and fast positioning. For the precise motion control, it is essential to effectively control the end-effector of these plants. The robotic manipulators are multiinput multi-output (MIMO), highly coupled, highly nonlinear and uncertain systems. The performance of these systems is influenced by the various uncertainties such as parameter variations, external disturbances, external noises and payload variations. The conventional proportional-integral-derivative (PID) controllers are not quite tractable for such mentioned complexities. Therefore, the demand of high precision control in the different fields has necessitated the use of intelligent control techniques. For designing any control scheme, it is necessary to obtain an accurate mathematical model of the plant under consideration. In this thesis, the different variants of two-link rigid planar robotic manipulators have been considered.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The robotic manipulators have become the integral part of various application areas such as industries, healthcare, nuclear plants and space etc. The significant advantages of these systems are precise and fast positioning. For the precise motion control, it is essential to effectively control the end-effector of these plants. The robotic manipulators are multiinput multi-output (MIMO), highly coupled, highly nonlinear and uncertain systems. The performance of these systems is influenced by the various uncertainties such as parameter variations, external disturbances, external noises and payload variations. The conventional proportional-integral-derivative (PID) controllers are not quite tractable for such mentioned complexities. Therefore, the demand of high precision control in the different fields has necessitated the use of intelligent control techniques. For designing any control scheme, it is necessary to obtain an accurate mathematical model of the plant under consideration. In this thesis, the different variants of two-link rigid planar robotic manipulators have been considered.