Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Intelligent Exploration for Genetic Algorithms
Paperback

Intelligent Exploration for Genetic Algorithms

$128.99
Sign in or become a Readings Member to add this title to your wishlist.

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Exploration vs. exploitation is a well known issue in Evolutionary Algorithms. Accordingly, an unbalanced search can lead to premature convergence. GASOM, a novel Genetic Algorithm, addresses this problem by intelligent exploration techniques. The approach uses Self-Organizing Maps to mine data from the evolution process. The information obtained is successfully utilized to enhance the search strategy and confront genetic drift. This way, local optima are avoided and exploratory power is maintained. The evaluation of GASOM on well known problems shows that it effectively prevents premature convergence and seeks the global optimum. Particularly in deceptive and missleading functions it showed outstanding performance. Additionally, representing the search history by the Self-Organizing Map provides a visually pleasing insight into the state and course of evolution.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
VDM Verlag Dr. Mueller E.K.
Country
Germany
Date
8 July 2008
Pages
72
ISBN
9783836488631

This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.

Exploration vs. exploitation is a well known issue in Evolutionary Algorithms. Accordingly, an unbalanced search can lead to premature convergence. GASOM, a novel Genetic Algorithm, addresses this problem by intelligent exploration techniques. The approach uses Self-Organizing Maps to mine data from the evolution process. The information obtained is successfully utilized to enhance the search strategy and confront genetic drift. This way, local optima are avoided and exploratory power is maintained. The evaluation of GASOM on well known problems shows that it effectively prevents premature convergence and seeks the global optimum. Particularly in deceptive and missleading functions it showed outstanding performance. Additionally, representing the search history by the Self-Organizing Map provides a visually pleasing insight into the state and course of evolution.

Read More
Format
Paperback
Publisher
VDM Verlag Dr. Mueller E.K.
Country
Germany
Date
8 July 2008
Pages
72
ISBN
9783836488631