Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

 
Paperback

Trivariate Local Lagrange Interpolation and Macro Elements of Arbitrary Smoothness

$403.99
Sign in or become a Readings Member to add this title to your wishlist.

In this work, we construct two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The other one is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. We construct trivariate macro-elements based on the Alfeld, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetra-hedral partition. In order to obtain the macro-elements based on the Worsey-Farin split we construct minimal determining sets for Cr macro-elements over the Clough-Tocher split of a triangle, which are more variable than those in the literature.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
31 December 2012
Pages
390
ISBN
9783834823922

In this work, we construct two trivariate local Lagrange interpolation methods which yield optimal approximation order and Cr macro-elements based on the Alfeld and the Worsey-Farin split of a tetrahedral partition. The first interpolation method is based on cubic C1 splines over type-4 cube partitions, for which numerical tests are given. The other one is the first trivariate Lagrange interpolation method using C2 splines. It is based on arbitrary tetrahedral partitions using splines of degree nine. We construct trivariate macro-elements based on the Alfeld, where each tetrahedron is divided into four subtetrahedra, and the Worsey-Farin split, where each tetrahedron is divided into twelve subtetrahedra, of a tetra-hedral partition. In order to obtain the macro-elements based on the Worsey-Farin split we construct minimal determining sets for Cr macro-elements over the Clough-Tocher split of a triangle, which are more variable than those in the literature.

Read More
Format
Paperback
Publisher
Springer Fachmedien Wiesbaden
Country
Germany
Date
31 December 2012
Pages
390
ISBN
9783834823922