Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Controller and Network Design Exploiting System Structure
Paperback

Controller and Network Design Exploiting System Structure

$195.99
Sign in or become a Readings Member to add this title to your wishlist.

We consider the problem of decentralized controller and network design under communication constraints. Traditionally, this problem is solved in a two-step approach by first deciding on a topology and then designing the dynamical couplings. In this thesis, we present a new approach by solving the problem of topology design and dynamics within one joint optimization problem. Structure design is then done subject to classical performance constraints on the closed loop system. We develop computationally efficient formulations by means of convex relaxations. This makes the proposed design methods attractive for practical applications and allows a tradeoff between sparsity of the subsystem interactions and achievable performance. We further introduce the concept of an l0-system gain for discrete linear time invariant systems, inspired by classical system gains from robust control. With this newly introduced system gain, we give a system theoretic explanation of the sparse closed loop response of l1-optimally controlled systems.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Logos Verlag Berlin GmbH
Country
Germany
Date
15 March 2015
Pages
130
ISBN
9783832539245

We consider the problem of decentralized controller and network design under communication constraints. Traditionally, this problem is solved in a two-step approach by first deciding on a topology and then designing the dynamical couplings. In this thesis, we present a new approach by solving the problem of topology design and dynamics within one joint optimization problem. Structure design is then done subject to classical performance constraints on the closed loop system. We develop computationally efficient formulations by means of convex relaxations. This makes the proposed design methods attractive for practical applications and allows a tradeoff between sparsity of the subsystem interactions and achievable performance. We further introduce the concept of an l0-system gain for discrete linear time invariant systems, inspired by classical system gains from robust control. With this newly introduced system gain, we give a system theoretic explanation of the sparse closed loop response of l1-optimally controlled systems.

Read More
Format
Paperback
Publisher
Logos Verlag Berlin GmbH
Country
Germany
Date
15 March 2015
Pages
130
ISBN
9783832539245