Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
The novel concept of a particle receiver for high-temperature concentrating solar applications was developed and investigated in the present work. The so-called Centrifugal Particle Receiver (CentRec) uses small bauxite particles as absorber, heat transfer and storage media at the same time. Due to advantageous optical and thermal properties, the particles can be heated up to 1000 degree Celsius without sintering in the storage. High thermal efficiencies at high outlet temperatures are expected indicating a promising way for cost reduction in solar power tower applications. A prototype in laboratory scale was designed, built and tested in order to demonstrate the feasibility and potential of the proposed concept. The expected simple control capability of the receiver could be verified and the target temperature of 900 degree Celsius successfully demonstrated. A thermal efficiency of >; 85 % is calculated by a validated corresponding numerical model for a particle outlet temperature of 900 degree Celsius and a design power of 1 MW/m^2.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
The novel concept of a particle receiver for high-temperature concentrating solar applications was developed and investigated in the present work. The so-called Centrifugal Particle Receiver (CentRec) uses small bauxite particles as absorber, heat transfer and storage media at the same time. Due to advantageous optical and thermal properties, the particles can be heated up to 1000 degree Celsius without sintering in the storage. High thermal efficiencies at high outlet temperatures are expected indicating a promising way for cost reduction in solar power tower applications. A prototype in laboratory scale was designed, built and tested in order to demonstrate the feasibility and potential of the proposed concept. The expected simple control capability of the receiver could be verified and the target temperature of 900 degree Celsius successfully demonstrated. A thermal efficiency of >; 85 % is calculated by a validated corresponding numerical model for a particle outlet temperature of 900 degree Celsius and a design power of 1 MW/m^2.