Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
I Differenzierbare Mannigfaltikeiten 1 Grundbegriffe 2 Tangentialbundel und Kotangentialbundel 3 Lie-Gruppen 4 Beispiele und Erganzungen 5 Drei grundlegende Satze II Multilineare Algebra 6 Tensorprodukte 7 AEussere und symmetrische Potenzen III Analysis auf Mannigfaltigkeiten 8 Vektorbundel 9 Differenzialformen 10 Zusammenhange IV Integration auf Mannigfaltigkeiten 11 Die Integralsatze 12 Erganzungen zur de Rham-Kohomologie 13 Anwendungen und Beispiele 14 Pseudo-Riemannsche Mannigfaltigkeiten V Funktionentheorie 15 Isolierte Singularitaten 16 Beispiele und Erganzungen 17 Uniformisierung VI Funktionalanalysis 18 Lokal konvexe Raume 19 Spektraltheorie Literaturverzeichnis Stichwortverzeichnis
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
I Differenzierbare Mannigfaltikeiten 1 Grundbegriffe 2 Tangentialbundel und Kotangentialbundel 3 Lie-Gruppen 4 Beispiele und Erganzungen 5 Drei grundlegende Satze II Multilineare Algebra 6 Tensorprodukte 7 AEussere und symmetrische Potenzen III Analysis auf Mannigfaltigkeiten 8 Vektorbundel 9 Differenzialformen 10 Zusammenhange IV Integration auf Mannigfaltigkeiten 11 Die Integralsatze 12 Erganzungen zur de Rham-Kohomologie 13 Anwendungen und Beispiele 14 Pseudo-Riemannsche Mannigfaltigkeiten V Funktionentheorie 15 Isolierte Singularitaten 16 Beispiele und Erganzungen 17 Uniformisierung VI Funktionalanalysis 18 Lokal konvexe Raume 19 Spektraltheorie Literaturverzeichnis Stichwortverzeichnis