Readings Newsletter
Become a Readings Member to make your shopping experience even easier.
Sign in or sign up for free!
You’re not far away from qualifying for FREE standard shipping within Australia
You’ve qualified for FREE standard shipping within Australia
The cart is loading…
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This textbook consists of an expanded set of lectures on algebraic aspects of quantum groups, concentrating particularly on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. The approach, a mixture of introductory textbook, lecture notes and overview survey, is designed to allow access by graduate students and by researchers new to the areas, as well as by experts, and to provide a basis for further study of the subject. Thus, large parts of the material are developed in full textbook style, with many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof. Much associated material is outlined in the appendices. Among the topics covered in the book are a discussion of the nature of the prime spectrum of a generic quantum algebra and details of how the Hopf algebra structure of the algebra and the Poisson algebra structure of the centre carry important consequences for quantized algebras when the quantum parameter is a root of unity. The book is structured in three parts: one introductory part with many examples plus background material; one concentrating on generic quantized coordinate rings; and one dealing with quantized algebras at roots of unity. Many examples and exercises at the end of each chapter are provided. The book serves also as a survey book for researchers and contains open problems and questions.
$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
This textbook consists of an expanded set of lectures on algebraic aspects of quantum groups, concentrating particularly on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. The approach, a mixture of introductory textbook, lecture notes and overview survey, is designed to allow access by graduate students and by researchers new to the areas, as well as by experts, and to provide a basis for further study of the subject. Thus, large parts of the material are developed in full textbook style, with many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof. Much associated material is outlined in the appendices. Among the topics covered in the book are a discussion of the nature of the prime spectrum of a generic quantum algebra and details of how the Hopf algebra structure of the algebra and the Poisson algebra structure of the centre carry important consequences for quantized algebras when the quantum parameter is a root of unity. The book is structured in three parts: one introductory part with many examples plus background material; one concentrating on generic quantized coordinate rings; and one dealing with quantized algebras at roots of unity. Many examples and exercises at the end of each chapter are provided. The book serves also as a survey book for researchers and contains open problems and questions.