Strength and Deformations of Structural Concrete Subjected to In-Plane Shear and Normal Forces
Walter Kaufmann
Strength and Deformations of Structural Concrete Subjected to In-Plane Shear and Normal Forces
Walter Kaufmann
This title is printed to order. This book may have been self-published. If so, we cannot guarantee the quality of the content. In the main most books will have gone through the editing process however some may not. We therefore suggest that you be aware of this before ordering this book. If in doubt check either the author or publisher’s details as we are unable to accept any returns unless they are faulty. Please contact us if you have any questions.
The present doctoral thesis was developed within the framework of the research project Deformation Capacity of Structural Concrete . This project aims at developing a consistent and experimentally verified theory of the deformation capacity of structural concrete. Previous work included the development of a theoretical model, the so-called Tension Chord Model, which allows a comprehensive description of the load-deforma tion behaviour of tension members in non-prestressed and prestressed concrete struc tures. The present work focuses on a new theoretical model, the so-called Cracked Mem brane Model. For members subjected to in-plane forces this new model combines the ba sic concepts of the modified compression field theory and the tension chord model. Crack spacings and tension stiffening effects in cracked membranes are determined from first principles and the link to plasticity theory methods is maintained since equilibrium conditions are formulated in terms of stresses at the cracks rather than average stresses between the cracks. The research project Deformation Capacity of Structural Concrete has been funded by the Swiss National Science Foundation and the Association of the Swiss Cement Pro ducers. This support is gratefully acknowledged. Zurich, July 1998 Prof. Dr. Peter Marti Abstract This thesis aims at contributing to a better understanding of the load-carrying and defor mational behaviour of structural concrete subjected to in-plane shear and normal forces.
This item is not currently in-stock. It can be ordered online and is expected to ship in 7-14 days
Our stock data is updated periodically, and availability may change throughout the day for in-demand items. Please call the relevant shop for the most current stock information. Prices are subject to change without notice.
Sign in or become a Readings Member to add this title to a wishlist.