Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Wideband GaN Microwave Power Amplifiers with Class-G Supply Modulation (Band 48
Paperback

Wideband GaN Microwave Power Amplifiers with Class-G Supply Modulation (Band 48

$169.99
Sign in or become a Readings Member to add this title to your wishlist.

The continuous and rapidly growing demand for mobile communication access led to a major increase in the number of base stations worldwide to provide sufficient coverage and quality of service. As a consequence, mobile communication networks have become a significant contributor to global energy consumption. Several advanced topologies for efficiency improvement of RF power amplifiers have been developed. Modulating the amplifier’s supply voltage according to the variation of the envelope signal is one of the most promising concepts. This topology is investigated here, with an architecture that switches the supply voltage of the power amplifier in discrete levels with a class-G supply modulator. The thesis addresses comprehensively all aspects of class-G supply modulation. Several prototype designs were realized to validate the theory and to gain experience on the influence of the corresponding parameters. These include the discrete supply voltage levels, the switching thresholds, and the interface between the RF PA and the class-G supply modulator. Efforts both on improving the RF power amplifiers and developing several class-G supply modulators were also involved. This work covers the progress up to a PA module that provides an instantaneous modulation bandwidth of 120 MHz and achieves better performance than state-of-the art continuous supply modulation systems. Class-G supply modulated RF power amplifiers based on gallium nitride technology exhibit a strong nonlinear behavior, therefore linearization is required. For this purpose, the linearization with digital predistortion based on behavioral models is optimized for the class-G topology and a novel predistorter model is developed and analyzed.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cuvillier
Date
6 February 2019
Pages
170
ISBN
9783736999312

The continuous and rapidly growing demand for mobile communication access led to a major increase in the number of base stations worldwide to provide sufficient coverage and quality of service. As a consequence, mobile communication networks have become a significant contributor to global energy consumption. Several advanced topologies for efficiency improvement of RF power amplifiers have been developed. Modulating the amplifier’s supply voltage according to the variation of the envelope signal is one of the most promising concepts. This topology is investigated here, with an architecture that switches the supply voltage of the power amplifier in discrete levels with a class-G supply modulator. The thesis addresses comprehensively all aspects of class-G supply modulation. Several prototype designs were realized to validate the theory and to gain experience on the influence of the corresponding parameters. These include the discrete supply voltage levels, the switching thresholds, and the interface between the RF PA and the class-G supply modulator. Efforts both on improving the RF power amplifiers and developing several class-G supply modulators were also involved. This work covers the progress up to a PA module that provides an instantaneous modulation bandwidth of 120 MHz and achieves better performance than state-of-the art continuous supply modulation systems. Class-G supply modulated RF power amplifiers based on gallium nitride technology exhibit a strong nonlinear behavior, therefore linearization is required. For this purpose, the linearization with digital predistortion based on behavioral models is optimized for the class-G topology and a novel predistorter model is developed and analyzed.

Read More
Format
Paperback
Publisher
Cuvillier
Date
6 February 2019
Pages
170
ISBN
9783736999312