Become a Readings Member to make your shopping experience even easier. Sign in or sign up for free!

Become a Readings Member. Sign in or sign up for free!

Hello Readings Member! Go to the member centre to view your orders, change your details, or view your lists, or sign out.

Hello Readings Member! Go to the member centre or sign out.

Broad-Area Laser Bars for 1 kW-Emission
Paperback

Broad-Area Laser Bars for 1 kW-Emission

$152.99
Sign in or become a Readings Member to add this title to your wishlist.

Industrial laser systems for material processing applications rely on the availability of highly efficient, high-brightness diode lasers. GaAs-based broad-area laser bars play a vital role in such applications as pump sources for high-beam-quality solid-state lasers and, increasingly, as direct processing tools. This work studies 940 nm-laser bars emitting 1 kW optical power at room temperature, identifying those physical mechanisms that are currently limiting electrical-to-optical conversion efficiency as well as lateral beam quality. In the process, several diagnostic studies on bars with varied lateral-longitudinal design were carried out. The effects of technological measures for performance optimization were analyzed, yielding a new benchmark in efficiency and lateral divergence. The studies into altered resonator lengths of 4 and 6 mm as well as fill factors between 69 and 87 % successfully reduce both the voltage dropping across the device and power saturation at high currents, enabling 66 % efficiency at the operation point. Concrete measures how to reach efficiencies >=70 % are presented thereafter, showing that doubling the efficiency value of the first 1 kW-demonstration in 2007 - amounting to 35 % - is in near reach. Investigation of the beam quality bases on a herein proposed and realized concept, in which the far field is resolved for each individual bar emitter. In this way, it is possible to determine how far-field profiles vary along the bar width and how much these variations affect the overall bar far-field. Further, such effects specific to bar structures can be separated into non-thermal and thermal influences. The effect of mechanical chip deformation (bar smile) as well as neighboring-emitter interaction has been investigated for the first time in active kW-class devices, yielding a lateral divergence as low as 8.8 degrees at the operation point.

Read More
In Shop
Out of stock
Shipping & Delivery

$9.00 standard shipping within Australia
FREE standard shipping within Australia for orders over $100.00
Express & International shipping calculated at checkout

MORE INFO
Format
Paperback
Publisher
Cuvillier
Date
20 July 2022
Pages
142
ISBN
9783736976269

Industrial laser systems for material processing applications rely on the availability of highly efficient, high-brightness diode lasers. GaAs-based broad-area laser bars play a vital role in such applications as pump sources for high-beam-quality solid-state lasers and, increasingly, as direct processing tools. This work studies 940 nm-laser bars emitting 1 kW optical power at room temperature, identifying those physical mechanisms that are currently limiting electrical-to-optical conversion efficiency as well as lateral beam quality. In the process, several diagnostic studies on bars with varied lateral-longitudinal design were carried out. The effects of technological measures for performance optimization were analyzed, yielding a new benchmark in efficiency and lateral divergence. The studies into altered resonator lengths of 4 and 6 mm as well as fill factors between 69 and 87 % successfully reduce both the voltage dropping across the device and power saturation at high currents, enabling 66 % efficiency at the operation point. Concrete measures how to reach efficiencies >=70 % are presented thereafter, showing that doubling the efficiency value of the first 1 kW-demonstration in 2007 - amounting to 35 % - is in near reach. Investigation of the beam quality bases on a herein proposed and realized concept, in which the far field is resolved for each individual bar emitter. In this way, it is possible to determine how far-field profiles vary along the bar width and how much these variations affect the overall bar far-field. Further, such effects specific to bar structures can be separated into non-thermal and thermal influences. The effect of mechanical chip deformation (bar smile) as well as neighboring-emitter interaction has been investigated for the first time in active kW-class devices, yielding a lateral divergence as low as 8.8 degrees at the operation point.

Read More
Format
Paperback
Publisher
Cuvillier
Date
20 July 2022
Pages
142
ISBN
9783736976269